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1. Introduction 

In order to deal with uncertainties, the idea of fuzzy sets and fuzzy set operations was introduced by 

L. A. Zadeh [8].  The first notion of fuzzy topological space had been defined by C. L. Chang [2]. 

The fuzzy first and second category were introduced and studied by the authors Dr. G. Thangaraj and 

Dr. G. Balasubramanian [5]. The fuzzy strongly first category sets were introduced and studied by 

Dr. G. Thangaraj and R. Palani [6]. The fuzzy 𝐠𝐭-nowhere dense set were introduced and studied by 

the authors Dr. S. Anjalmose and M. Kalaimathi [1]. In this paper we introduce a new class of fuzzy 

𝐠𝐭-first category and fuzzy strongly 𝐠𝐭-first category sets. Several properties are also discussed with 

suitable examples. 

 

2. Preliminaries 

Definition 2.1: [3] 

A fuzzy set η of a fuzzy topological space X is called fuzzy locally closed set if η = (𝛾⋀𝜁), where 𝛾 is 

a fuzzy open set and 𝜁 is fuzzy closed set.  The complement of fuzzy locally closed set is called 

fuzzy locally open set. 

Definition 2.2: [4] 

A fuzzy set η in a fuzzy topological space (X, T) is called fuzzy somewhere dense if 𝑖𝑛𝑡 𝑐𝑙 (𝜂)  ≠  0, 

in (X, T). 

Definition 2.3: [7] 

If  η is a fuzzy somewhere dense set in a fuzzy topological space (X, T), then 1 − η is called a 

complement of fuzzy somewhere dense set in (X, T). It is to be denoted as fuzzy cs dense set in (X, 

T). 

Definition 2.4: [1] 

A fuzzy set η in a fuzzy topological space (X, T) is called fuzzy gt-dense if there exists no fuzzy gt-

closed set β in (X, T) such that η < β < 1. 

Definition 2.5: [1] 

A fuzzy set η in a fuzzy topological space (X, T) is called fuzzy gt-nowhere dense if there exists no 

non-zero fuzzy gt-open set µ in (X, T) such that µ < gt − 𝑐𝑙(η). That is,  gt − 𝑖𝑛𝑡 gt − 𝑐𝑙(η)  =  0. 

 

3. Fuzzy 𝐠𝐭-somewhere dense set. 

Definition 3.1: 

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy gt-somewhere dense set if gt −
𝑖𝑛𝑡 gt − 𝑐𝑙(𝜆)  ≠  0 in (X, T).  
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Example 3.2: 

Let  𝑋 = {𝜆, 𝜇, 𝛾}. The fuzzy sets 𝜆, 𝜇 and 𝛾 are defined on X as follows: 

𝜆: 𝑋 → [0, 1] defined as 𝜆 (
𝑎

1
,

𝑏

0.8
,

𝑐

0.5
) , 

𝜇: 𝑋 → [0, 1] defined as 𝜇 (
𝑎

0.9
,

𝑏

0.8
,

𝑐

0.3
), 

𝛾: 𝑋 → [0, 1] defined as 𝛾 (
𝑎

0.7
,

𝑏

0.5
,

𝑐

0.1
). 

Then T = {0, 𝜆, 𝜇, 𝛾, 1} is a fuzzy topology on X.  Now the fuzzy sets 1 − 𝜆, 𝛼, 𝜀, 𝛿, 𝜁, 𝜂, 𝜗, 𝜈 and 

𝜎are fuzzy locally closed in (X, T), since 𝜆 ∧ (1 − 𝜆) =  1 − 𝜆, 𝜆 ∧ (1 − 𝜇) = 𝛼,         𝜆 ∧ (1 − 𝛾) =
 𝜀,  𝜇 ∧ (1 − 𝜆) =  𝛿,          𝜇 ∧ (1 − 𝜇) =  𝜁,      𝜇 ∧ (1 − 𝛾) =  𝜂, 𝛾 ∧ (1 − 𝜆) =  𝜗, 𝛾 ∧ (1 − 𝜇) =
 𝜈and 𝛾 ∧ (1 − 𝛾) =  𝜎. Therefore the fuzzy sets 𝜆, 1 − 𝛼, 1 − 𝜀, 1 − 𝛿, 1 − 𝜁, 1 − 𝜂, 1 − 𝜗, 1 − 𝜈 

and 1 − 𝜎 are fuzzy locally open sets. The fuzzy sets 1 − 𝜆, 𝛼, 𝜀, 1 − 𝜇, 𝜔,    1 − 𝛾are fuzzy gt-

closed in (X, T), since 𝜆 ∧ (1 − 𝜆) = 1 − 𝜆, 𝜆 ∧ (1 − 𝜇) = 𝛼, 𝜆 ∧ (1 − 𝛾) = 𝜀, (1 − 𝛼) ∧
(1 − 𝜆) = 1 − 𝜆,        (1 − 𝛼) ∧ (1 − 𝜇) = 𝛼,         (1 − 𝛼) ∧ (1 − 𝛾) = 𝜀,          (1 − 𝜀) ∧ (1 − 𝜆) =
1 − 𝜆, (1 − 𝜀) ∧ (1 − 𝜇) = 𝛼,                (1 − 𝜀) ∧ (1 − 𝛾) = 𝜀, (1 − 𝛿) ∧ (1 − 𝜆) = 1 − 𝜆,
(1 − 𝛿) ∧ (1 − 𝜇) = 1 − 𝜇,      (1 − 𝛿) ∧ (1 − 𝛾) = (0.3, 0.5, 0.7) = 𝜔 (𝑠𝑎𝑦), (1 − 𝜁) ∧ (1 − 𝜆) =
1 − 𝜆,       (1 − 𝜁) ∧ (1 − 𝜇) = 1 − 𝜇, (1 − 𝜁) ∧ (1 − 𝛾) = 𝜔 ,          (1 − 𝜂) ∧ (1 − 𝜆) = 1 −
𝜆,       (1 − 𝜂) ∧ (1 − 𝜇) = 1 − 𝜇,      (1 − 𝜂) ∧ (1 − 𝛾) = 𝜔 ,        (1 − 𝜗) ∧ (1 − 𝜆) = 1 −
𝜆,      (1 − 𝜗) ∧ (1 − 𝜇) = 1 − 𝜇,      (1 − 𝜗) ∧ (1 − 𝛾) = 1 − 𝛾,    (1 − 𝜈) ∧ (1 − 𝜆) = 1 −
𝜆,      (1 − 𝜈) ∧ (1 − 𝜇) = 1 − 𝜇, (1 − 𝜈) ∧ (1 − 𝛾) = 1 − 𝛾,   (1 − 𝜎)  ∧ (1 − 𝜆) = 1 −
𝜆,     (1 − 𝜎) ∧ (1 − 𝜇) = 1 − 𝜇, (1 − 𝜎) ∧ (1 − 𝛾) = 1 − 𝛾, where the fuzzy sets 𝜆, 1 − 𝛼, 1 −
𝜀, 1 − 𝛿, 1 − 𝜁, 1 − 𝜂, 1 − 𝜗, 1 − 𝜈 and 1 − 𝜎 are fuzzy locally open sets in (X, T). Therefore the 

fuzzy sets 𝜆, 1 − 𝛼, 1 − 𝜀, 𝜇, 1 − 𝜔,    𝛾 are fuzzy gt-open in (X, T). The fuzzy sets 𝛼, 𝜀, 1 − 𝜇,
𝜔,    1 − 𝛾, 1 − 𝛼, 1 − 𝜁in (X, T) are fuzzy gt-somewhere dense. Since 𝑔𝑡 − 𝑖𝑛𝑡gt − 𝑐𝑙(𝛼) ≠ 0,
𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜀) ≠ 0,   𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(1 − 𝜇) ≠ 0,     𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜔) ≠ 0,   𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 −
𝑐𝑙(1 − 𝛼) ≠ 0,    𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(1 − 𝛾) ≠ 0,   𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(1 − 𝜁) ≠ 0. The fuzzy set 1 − 𝜆 is 

not of fuzzy gt-somewhere dense in (X, T), since 𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(1 − 𝜆) = 0. 
Proposition 3.3: 

A fuzzy set λ is called fuzzy gt-somewhere dense set in a fuzzy topological space (X, T), then λ is 

fuzzy locally closed in (X, T). 

Proof:  

In Example 3.2, the fuzzy set  𝛼, 𝜀 are fuzzy gt-somewhere dense in a fuzzy topological space (X, T) 

also fuzzy locally closed in (X, T) 

Proposition 3.4: 

A fuzzy set λ is called fuzzy gt-somewhere dense set in a fuzzy topological space (X, T), then λ is 

fuzzy closed in (X, T). 

Proof: 

In Example 3.2, the fuzzy set  1 − 𝜇, 1 − 𝛾are fuzzy gt-somewhere dense in a fuzzy topological 

space (X, T) also fuzzy closed in (X, T). 

Proposition 3.5: 

A fuzzy set λ is fuzzy gt-somewhere dense set in a fuzzy topological space     (X, T), then λ is need 

not be fuzzy gt-closed in (X, T). 

Proof: 

In Example 3.2, the fuzzy set  1 − 𝛼, 1 − 𝜁are fuzzy gt-somewhere dense in a fuzzy topological 

space (X, T) but not of fuzzy gt-closed in (X, T). 

Proposition 3.6: 

A fuzzy set λ and 𝜇 are fuzzy gt-somewhere dense sets in a fuzzy topological space (X, T), then λ ∧
𝜇 is fuzzy gt-somewhere dense in (X, T). 

Proof: 

Let λ and 𝜇 are fuzzy somewhere dense set in (X, T) then 𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(λ)    ≠ 0  and 𝑔𝑡 −
𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜇) ≠ 0. Now  𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(λ ∧ 𝜇) = [𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(λ)] ∧ [𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜇)] ≠
0. Hence  λ ∧ 𝜇 is a fuzzy gt-somewhere dense in a fuzzy topological space (X, T). 
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Proposition 3.7: 

A fuzzy set λ be any non zero fuzzy set and 𝜇 be a fuzzy gt-somewhere dense  

sets in a fuzzy topological space (X, T), then λ ∨ 𝜇 is fuzzy gt-somewhere dense in    (X, T). 

Proof: 

Let λ be any non-zero fuzzy set and 𝜇 be a fuzzy gt-somewhere dense set in  (X, T) then 𝑔𝑡 −
𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜇) ≠ 0. Now 𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(λ ∨ 𝜇) = [𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(λ)] ∨ [𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜇)] ≠
0. Hence  λ ∨ 𝜇 is a fuzzy gt-somewhere dense in a fuzzy topological space (X, T). 

Proposition 3.8:  

Let X and Y be fuzzy topological space (X, T) such that X is product related to Y. If  λ is a fuzzy gt-

somewhere dense in X and 𝜇is a fuzzy gt-somewhere dense in Y, then the product λ × 𝜇 is a fuzzy 

gt-somewhere dense in the product space  𝑋 × 𝑌. 

Proof: 

 Let λ be a fuzzy gt-somewhere dense in X and 𝜇 be a fuzzy gt-somewhere dense in Y. Then 

𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(λ) ≠ 0 in (X, T) and 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(𝜇) ≠ 0 in (Y, S), since X is product related 

to Y.  

Now 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(λ × 𝜇) =  𝑔𝑡 − 𝑖𝑛𝑡 [𝑔𝑡 − 𝑐𝑙(λ) × 𝑔𝑡 − 𝑐𝑙(𝜇)] 
= 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(λ) × 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(𝜇) 

≠ 0. 

Thus the product λ × 𝜇 is a fuzzy gt-somewhere dense in the product space  𝑋 × 𝑌. 

Proposition 3.9: 

A fuzzy set λ is a fuzzy gt-somewhere dense set in a fuzzy topological space      (X, T), then λ need 

not be fuzzy gt-open in (X, T). 

Proof: 

In Example 3.2, the fuzzy set  𝛼, 𝜀are fuzzy gt-somewhere dense in a fuzzy topological space (X, T) 

but not of fuzzy gt-open in (X, T). 

Proposition 3.10: 

A fuzzy set λ and 𝜇 are fuzzy gt-somewhere dense sets in a fuzzy topological  

space (X, T), then λ ∨ 𝜇 is fuzzy gt-somewhere dense in (X, T). 

Proposition 3.11: 

A fuzzy set λ is fuzzy gt-closed with 𝑔𝑡 − 𝑖𝑛𝑡(λ) ≠ 0 then in a fuzzy topological space (X, T), then 

λ is a fuzzy gt-somewhere dense in (X, T). 

Proposition 3.12: 

A fuzzy set λ is fuzzy gt-somewhere dense in a fuzzy topological space (X, T), then 𝑔𝑡 − 𝑐𝑙(λ)is a 

fuzzy gt-somewhere dense in (X, T). 

Proposition 3.13: 

A fuzzy set λ is fuzzy gt-somewhere dense in a fuzzy topological space (X, T), then 𝑔𝑡 − 𝑐𝑙 𝑔𝑡 −
𝑖𝑛𝑡(1 − λ) ≠ 1. 

 

4. Fuzzy 𝐠𝐭-cs dense sets. 

Definition 4.1: 

If λ is a fuzzy gt-somewhere dense set in a fuzzy topological space (X, T), then 1 − λ is called a 

complement of fuzzy gt-somewhere dense set in (X, T). It is to be denoted as fuzzy gt-cs dense set in 

(X, T). 

In example 3.2, the fuzzy sets 𝛼, 𝜀, 1 −  𝜇, 𝜔, 1 − 𝛾, 1 − 𝜁, 1 − 𝜈, are fuzzy gt-cs dense in (X, T), 

since 1 − 𝛼, 1 − 𝜀, 𝜇, 1 − 𝜔, 𝛾, 𝜁, 𝜈,  are fuzzy gt-somewhere dense in (X, T).  

Proposition 4.2: 

A fuzzy set λ be a fuzzy gt-cs dense sets in a fuzzy topological space (X, T), then 𝑔𝑡 − 𝑖𝑛𝑡(λ) is not 

a fuzzy gt-dense in (X, T). 

Proof: 

Let λ be fuzzy gt-cs dense set in (X, T) then 1 − λ is a fuzzy gt-somewhere dense in (X, T). 

Therefore 𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(1 − λ) ≠ 0 implies that 1 − [𝑔𝑡 − 𝑐𝑙𝑔𝑡 − 𝑖𝑛𝑡(λ)] ≠ 0 implies that 𝑔𝑡 −
𝑐𝑙 𝑔𝑡 − 𝑖𝑛𝑡(λ) ≠ 1. Hence 𝑔𝑡 − 𝑖𝑛𝑡(λ) is not a fuzzy gt-dense in (X, T). 
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Proposition 4.3: 

A fuzzy set 𝜆 and 𝜇 be a fuzzy gt-cs dense sets in a fuzzy topological space    (X, T), then (λ ∧ μ) is 

fuzzy gt-cs dense in (X, T). 

Proposition 4.4: 

A fuzzy set 𝜆 be a fuzzy gt-cs dense sets in a fuzzy topological space (X, T), then 𝑔𝑡 − 𝑐𝑙 𝑔𝑡 −
𝑖𝑛𝑡(λ) ≠ 1. 

 

5. Fuzzy 𝐠𝐭-first category and fuzzy strongly gt-first category set. 

Definition 5.1: 

 Let (X, T) be a fuzzy topological space. A fuzzy set λ in X is called a fuzzy strongly gt-

nowhere dense set, if λ ∧ (1 − λ) is a fuzzy gt-nowhere dense set in (X, T). That is., λ is a fuzzy 

strongly gt-nowhere dense set in (X, T), if  𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[𝜆 ∧  (1 −  𝜆)]  =  0 in (X, T). 

Example 5.2: 

Let  𝑋 = {𝜆, 𝜇}. The fuzzy sets 𝜆 and 𝜇 are defined on X as follows: 

𝜆: 𝑋 → [0, 1] defined as 𝜆 (
𝑎

0.2
,

𝑏

0.7
), 

𝜇: 𝑋 → [0, 1] defined as 𝜇 (
𝑎

0.1
,

𝑏

0.5
). 

Then T = { 0, 𝜆, 𝜇, 1} is a fuzzy topology on X.  Now the fuzzy sets 𝜇, 𝛼, 𝛽 and 𝛾are fuzzy locally 

closed in (X, T), since 𝜆 ∧ (1 − 𝜆) = 𝛼, 𝜇 ∧ (1 − 𝜆) =  𝛾, 𝜆 ∧ (1 − 𝜇) = 𝛽 and 𝜇 ∧ (1 − 𝜇) = 𝜇. 

Then 1 − 𝜇, 1 − 𝛼, 1 − 𝛽 and 1 − 𝛾 are fuzzy locally open sets in       (X, T). The fuzzy sets 1 −
𝜆, 1 −  𝜇 and 1 − 𝛽 are fuzzy gt-closed, since (1 − 𝛼) ∧ (1 − 𝜆) = 1 − 𝜆, (1 − 𝛼) ∧ (1 − 𝜇) =  1 −
𝛽,    (1 − 𝛽) ∧ (1 − 𝜆) = 1 − 𝜆, (1 − 𝛽) ∧ (1 − 𝜇) = 1 − 𝛽, (1 − 𝛾) ∧ (1 − 𝜆) = 1 − 𝜆, (1 − 𝛾) ∧
(1 − 𝜇) = 1 − 𝜇, (1 − 𝜇) ∧ (1 − 𝜆) = 1 − 𝜆, (1 − 𝜇) ∧ (1 − 𝜇) = 1 − 𝜇, where 1 − 𝜇, 1 − 𝛼, 1 − 𝛽 

and 1 − 𝛾 are fuzzy locally open sets in (X, T). Therefore the fuzzy sets 𝜆, 𝜇 and 𝛽 in (X, T) are 

fuzzy gt-open.  

Now consider the fuzzy sets 𝜏 and 𝜔 as defined on x as follows 

𝜏 ∶ 𝑋 → [0, 1] defined as 𝜏 (
𝑎

0.7
,

𝑏

0.2
) , 

𝜔: 𝑋 → [0, 1] defined as 𝜔 (
𝑎

0.6
,

𝑏

0.3
). 

The fuzzy sets  𝜏, 𝜔, 𝜆 are fuzzy strongly gt-nowhere dense in (X, T), since 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 −
𝑐𝑙[𝜏 ∧ (1 − 𝜏)] = 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(0.3, 0.2) =  0,    𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[𝜔 ∧ (1 − 𝜔)] = 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 −
𝑐𝑙(0.4, 0.3) =  0, 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[𝜆 ∧ (1 − 𝜆)] = 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(0.2, 0.3) = 0. But 𝜇, 𝛽 are not of 

fuzzy strongly gt-nowhere dense in (X, T), since  𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[𝜇 ∧  (1 −  𝜇)] = 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 −
𝑐𝑙(𝜇) ≠  0,       𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[𝛽 ∧  (1 −  𝛽)] = 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(𝛽) ≠ 0. 

Definition 5.3:  

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy gt-first category set if λ = 𝑉𝑖=1
∞ (𝜆𝑖), 

where (𝜆𝑖)’s are fuzzy gt-nowhere dense sets in (X, T). Any other fuzzy set in (X, T) is said to be 

fuzzy gt-second category. 

In example 5.2, The fuzzy sets 1 − 𝜆, 𝜏 and 𝜔 are fuzzy gt-nowhere dense sets, since 𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 −
𝑐𝑙(1 − 𝜆) = 0, 𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜏) = 0, 𝑔𝑡 − 𝑖𝑛𝑡𝑔𝑡 − 𝑐𝑙(𝜔) = 0. Therefore the union of fuzzy gt-

nowhere dense sets 1 − 𝜆, 𝜏 and 𝜔 is 1 − 𝜆, that is [(1 − 𝜆) ∨ 𝜏 ∨ 𝜔] = 1 − 𝜆. Hence 1 − 𝜆 is a 

fuzzy gt-first category set in (X, T). Otherwise some of the fuzzy sets 𝜆, 𝜇, 𝛽, 1 − 𝜇, 1 − 𝛽 are 

fuzzy gt-second category in (X, T). 

Definition 5.4:  

A fuzzy set λin a fuzzy topological space (X, T) is called fuzzy gt-residual set if 1 − λ is fuzzy gt-

first category in (X, T).  

 

 In Example 5.2,  1 − 𝜆 is a fuzzy gt-first category set in (X, T), since the union of fuzzy gt-

nowhere dense sets 1 − 𝜆, 𝜏 and 𝜔 are 1 − 𝜆, that is [(1 − 𝜆) ∨ 𝜏 ∨ 𝜔] = 1 − 𝜆. Hence λis a fuzzy 

gt-residual in (X, T). 
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Definition 5.5:  

 A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy strongly gt-first category set 

if λ = 𝑉𝑖=1
∞ (𝜆𝑖), where (𝜆𝑖)’s are fuzzy strongly gt-nowhere dense sets in (X, T). Any other fuzzy set 

in (X, T) is said to be fuzzy strongly gt-second category. 

 

In Example 5.2, (𝜏 ∨  𝜔 ∨ 𝜆) = (0.7, 0.7) = 𝛿 (say) is a fuzzy strongly gt-first category in (X, T), 

since  𝜏, 𝜔, 𝜆 are fuzzy strongly gt-nowhere dense sets in (X, T). 

Definition 5.6:  

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy strongly gt-residual set if 1 − λ is 

fuzzy strongly gt-first category in (X, T).  

 

In Example 5.2, (𝜏 ∨  𝜔 ∨ 𝜆) = (0.7, 0.7) = 𝛿 (say) is a fuzzy strongly gt-first category in (X, T), 

where 𝜏, 𝜔, 𝜆 are fuzzy strongly gt-nowhere dense sets in (X, T).  

Proposition 5.7:  

If  λ is a fuzzy gt-nowhere dense set in a fuzzy topological space (X, T), then λ is a fuzzy strongly 

gt-nowhere dense set in (X, T).  

Proof:  

Let λ be a fuzzy gt-nowhere dense set in (X, T). Then 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(𝜆) = 0, in (X, T). Since λ ∧
(1 − λ) ≤ λ  in (X, T),  𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 –  λ)] ≤ 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(λ) and hence 𝑔𝑡 −
𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 –  λ)] ≤ 0. That is 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1– λ)] = 0. Hence λ is a fuzzy strongly 

gt-nowhere dense set in (X, T).  

Remark 5.8.  

A fuzzy strongly gt-nowhere dense set in a fuzzy topological space (X, T) need not be a fuzzy gt-

nowhere dense set in (X, T).  

In example 5.2, λ is a fuzzy strongly gt-nowhere dense set, but not a fuzzy gt-nowhere dense set in 

(X, T).  

Proposition 5.9:  

If 𝑔𝑡 − 𝑖𝑛𝑡(λ) is a fuzzy gt-dense set, for a fuzzy set λ defined on X, in a fuzzy topological space (X, 

T), then λ is a fuzzy strongly gt-nowhere dense set in (X, T).  

Proof: 

Suppose that 𝑔𝑡 − 𝑖𝑛𝑡(λ) is a fuzzy gt-dense set in (X, T). Then 𝑔𝑡 − 𝑔𝑡 − 𝑐𝑙[𝑔𝑡 − 𝑖𝑛𝑡(λ)] = 1 in 

(X, T) and 1 − [𝑔𝑡 − 𝑐𝑙 𝑔𝑡 − 𝑖𝑛𝑡(λ)] = 0. This implies that 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(1 − λ) = 0 in (X, T). 

Since λ ∧ (1 −  λ) ≤ 1 − λ,  𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 −  λ)] ≤ 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(1 − λ) and hence 

𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(1 − λ) ≤ 0. That is., 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 − λ)] = 0. Hence λ is a fuzzy 

strongly gt-nowhere dense set in (X, T).  

Proposition 5.10:  

If 1 −  λ is a fuzzy gt-nowhere dense set in a fuzzy topological space (X, T), then λ is a fuzzy 

strongly gt-nowhere dense set in (X, T). 

Proof:  

Suppose that 1 −  λ is a fuzzy gt-nowhere dense set in (X, T). Then, 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(1 − λ) = 0 in 

(X, T). Since λ ∧ (1 − λ) ≤ 1 − λ, [𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 − λ)] ≤ 𝑔𝑡 − 𝑖𝑛𝑡 [𝑔𝑡 − 𝑐𝑙(1 − λ)] and 

hence 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 − λ)] ≤ 0. That is., 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 − λ)] = 0 in (X, T) and 

hence λ is a fuzzy strongly gt-nowhere dense set in (X, T).  

Proposition 5.11: 

If 𝑔𝑡 − 𝑐𝑙 𝑔𝑡 − 𝑖𝑛𝑡(1 –  λ) = 1, for a fuzzy set λ defined on X in a fuzzy topological space (X, T), 

then λ is a fuzzy strongly gt-nowhere dense set in (X, T).  

Proof:  

Suppose that 𝑔𝑡 − 𝑐𝑙 𝑔𝑡 − 𝑖𝑛𝑡(1 –  λ) = 1 in (X, T). Then 1 − [𝑔𝑡 − 𝑐𝑙 𝑔𝑡 − 𝑖𝑛𝑡(1 –  λ) = 0 and 1 −
{1 − [𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙( λ)]} = 0. This implies that 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙(λ) = 0 in (X, T). Thus λ is a 

fuzzy gt-nowhere dense set in (X, T). Then, by proposition 5.7, λ is a fuzzy strongly gt-nowhere 

dense set in (X, T).  
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Proposition 5.12:  

If λ is a fuzzy strongly gt-nowhere dense set in a fuzzy topological space (X, T), then 1 − λ  is also a 

fuzzy strongly gt-nowhere dense set in (X, T).  

Proof:  

Let λ be a fuzzy strongly gt-nowhere dense set in (X, T). Then 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[λ ∧ (1 −  λ)] = 0 in 

(X, T). Now 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙{(1 − λ) ∧ [1 − (1 −  λ)]} = 𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙[(1 − λ) ∧ λ] and hence 

𝑔𝑡 − 𝑖𝑛𝑡 𝑔𝑡 − 𝑐𝑙{(1 − λ) ∧ [1 − (1 −  λ)]} = 0. This implies that 1 − λ is a fuzzy strongly gt-

nowhere dense set in (X, T).  

Proposition 5.13: 

If λ is a fuzzy gt-nowhere dense set in a fuzzy topological space (X, T), then 1 − λ  is a fuzzy 

strongly gt-nowhere dense set in (X, T).  

Proof:  

Let λ be a fuzzy gt-nowhere dense set in (X, T). Then, by proposition 5.7, λ is a fuzzy strongly gt-

nowhere dense set in (X, T), and by proposition 5.12, 1 − λ is a fuzzy strongly gt-nowhere dense set 

in(X, T).  

Proposition 5.14:  

If 𝜆 is a fuzzy gt-first category set in a fuzzy topological space (X, T), then 𝜆 is a fuzzy strongly gt-

first category set in (X, T).  

Proof:  

Let 𝜆 be a fuzzy gt-first category set in (X, T). Then 𝜆 =∨𝑖=1
∞ (𝜆𝑖), where (𝜆𝑖)′s are fuzzy gt-

nowhere dense sets in (X, T). By proposition 5.7, the fuzzy gt-nowhere dense sets (𝜆𝑖)′s are fuzzy 

strongly gt-nowhere dense sets in (X, T) and hence 𝜆 =∨𝑖=1
∞ (𝜆𝑖), where (𝜆𝑖) ′ s are fuzzy strongly 

gt-nowhere dense sets in   (X, T), implies that 𝜆 is a fuzzy strongly gt-first category set in (X, T).  

Remark 5.15: 

The converse of the above proposition need not be true. A fuzzy strongly gt-first category set need 

not be a fuzzy gt-first category set in a fuzzy topological space.  

For, in example 5.2, (𝜏 ∨  𝜔 ∨ 𝜆) = 𝛿 is a fuzzy strongly gt-first category set in (X, T) but not a 

fuzzy gt-first category set in (X, T). 
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